A spider in the family Anyphaenidae has made its home on a twig infested with scale insects.  Photo: Emily Meineke, Harvard University

I think by now most people accept that we can’t hope to preserve all extant creatures over the next 50 or 100 years. Global changes in temperature and habitat will help some species and hurt others, as Elsa Youngsteadt showed in her recent paper. Since we can’t save every creature, what is really important to protect? Increasingly, people try to understand and protect species and ecological interactions that generate ecosystem services for people, rather than diversity per se.

Former undergraduate researcher Anna Holmquist examines branches in the field. Photo: Emily Meineke, Harvard University

Urban warming makes street tree temperatures similar to what is expected under climate change, so we have studied them to predict the effects of warming – urban and global – on pest abundance and tree health. Street trees also host a surprising amount of arthropod diversity if you just look hard enough. In a new paper, our former graduate and undergraduate students, Emily Meineke and Anna Holmquist, with help from Gina Wimp at GWU, studied the effects of warming on spider communities in street tree canopies.

The team tested two predictions. Spiders like to eat and often become more abundant in places where prey is more abundant. So we predicted that, since heat increases herbivore abundance, spider abundance would follow. However, because some spiders probably benefit from warming while others do not, we predicted the composition (member species) of the spider community would be different in hot and cool trees.

The fitness of this spider probably increases with warming since it is hot and sweaty from exercise and yoga. Other spiders (not pictured, you can only work kids so hard) die in, or leave, hot places. Thus, yoga spiders will be more common on hot trees and the community composition will change. Artwork by: I.F.

Ghost spiders, like this one, are nondescript but perform important ecosystem functions. Photo: Matt Bertone, NCSU.

Spiders were by far the most abundant natural enemy group. However, as herbivore abundance increased with warming, spider abundance stayed the same. This is bad news for trees because it means that herbivores can increase unchecked. Instead, urban warming altered spider community structure due in part to a whole family of spiders, Anyphaenids — aptly named ghost spiders – virtually disappearing from the hottest trees in one year of the study. This is bad news for conserving urban biodiversity and also because ghost spiders feed on particular pests like lace bugs.

In this experiment, warming reduced biodiversity but also likely reduces biological control by predators, an important ecosystem service. Something happens in these trees to make a common ecological interaction – predators congregating to prey – stop happening. The consequence is that pests go nuts and trees suffer.

Read the full paper here:
Meineke, E.K., Holmquist, A.J., Wimp, G.M., Frank, S.D. (2017) Changes in spider community composition are associated with urban temperature, not herbivore abundance. Journal of Urban Ecology, 3 (1): juw010. doi: 10.1093/jue/juw010.

Share this post!