Chrysodeixis chalcites

Scientific Name
Chrysodeixis chalcites (Esper, 1789)

Synonyms:
Autographa chalcites, Chrysodeixis chalcytes, Noctua chalcites, Noctua chalcytes, Noctua chalsytis, Noctua questionis, Phalaena chalcites, Plusia buchholzi, Plusia chalcites, Plusia chalcytes, Plusia cohaerens, Phytometra chalcites

Note: Zhang (1994) states that Asian and Australian citations referring to Chrysodeixis chalcites actually refer to C. eriosoma, whereas Murillo et al (2013) state that the relationship between the two species needs further clarification. Lafontaine and Schmidt (2013) state that the only way to distinguish between the two species is by looking at geographic range, DNA, and pheromones.

Common Name(s)
Golden twin-spot moth, green garden looper, green looper, green semi-looper, groundnut semi-looper, tomato leafworm, tomato looper

Type of Pest
Moth

Taxonomic Position
Class: Insecta, Order: Lepidoptera, Family: Noctuidae

Reason for Inclusion in Manual
National threat; Requested by the CAPS community

Pest Description
Eggs: Eggs are pearly white to pale green and shiny. They are dome-shaped (hemispherical) with 28 to 32 vertical ribs from the micropyle to the base (Bretherton, 1983; Goodey, 1991). The eggs darken shortly before hatching (Harakly and Farag, 1975).

Larvae: Newly hatched larvae are dusky white, with head and thoracic shield blackish. The setae on the body are long and conspicuous, with thin,

Figure 1. Larva of C. chalcites (Steve Hatch, Bugwood.org).

Last updated: July 12, 2013
longitudinal white lines along the sides; both become less obvious in the last instar. Soon after feeding, the larvae become light green in color (Harakly and Farag, 1975). Mature larvae are 34 to 38 mm (approx. $1\frac{5}{16}$ to $1 \frac{1}{2}$ in) long, pale yellow-green with a glassy green to grey head edged with a black streak (Fig. 1). Above the spiracles on each side of the body is a thin dark green or black line stretching from the head to the seventh abdominal segment; below this is a thicker white line from the head to the tip of the anal proleg. Spiracles are black. The ventral region is speckled with white dots (Haggett, 1980; Bretherton, 1983; Passoa and Gilligan, 1995; Porter, 1997). Larvae have only three pairs of prolegs, instead of the normal five, resulting in the looping gait giving rise to some of the common names. Haggett (1980) provides a detailed description and color illustration of the final larval instar.

Pupae: The pupa is 20 mm (approx. $\frac{3}{4}$ in) long, black in a white cocoon (Fig. 2), which turns brown then black (Harakly and Farag, 1975; Bretherton, 1983).

Adults: The adult wingspan is approximately 40 mm (approx. $1\frac{9}{16}$ in). The forewing is 15 to 17 mm (approx. $\frac{9}{16}$ to $\frac{11}{16}$ in), usually gold, although some individuals have more of a bronze color (Fig. 3). There are two oval silver spots on the forewings, although in some individuals these are united. The hindwing is paler than the forewing. There are two prominent crests on the thorax (Pinhey, 1979; Bretherton, 1983; Passoa, 1995a).

Further description of the life stages can be found in Goodey (1991) and Passoa (1995b).

Biology and Ecology

Chrysodeixis chalcites is a polyvoltine species, with up to eight or nine generations per year in Egypt (Rashid et al., 1971). After emergence, females mate then begin oviposition within 2 or 3 days (Gasim and Younis, 1989). Eggs are laid on upper and
lower leaf surfaces at night, whilst females are on the wing. Females only briefly touch the leaf to deposit one, two, or a few eggs at a time. Eggs are very widely scattered in the crop (Linden, 1996). At 20°C (68°F) egg incubation lasts between 5 and 26 days (Gaumont and Moreau, 1961).

Reports in the literature show considerable variation in the number of eggs oviposited by *C. chalcites*. Harakly and Farag (1975) reported females lay from 14 to 281 eggs with a mean of 149. In contrast, Gasim and Younis (1989) reported the mean number of eggs laid per female to be much higher with 385, 640, and 405 eggs at 20, 25 and 30°C (68, 77, 86°F), respectively.

Gasim and Younis (1989) studied the development rate of *C. chalcites* eggs at three temperatures, 20, 25 and 30°C (68, 77, 86°F). The mean length of time between oviposition and egg hatch decreased with increasing temperature. At the lower temperature eggs took 4.5 days to hatch, at 25°C (77°F) they took an average of 3.0 days and at the upper temperature they took 2.0 days.

The majority of the larvae pass through six instars. Very few may have four or seven instars. First-instar larvae graze on the underside of leaves feeding on parenchyma. They can be quite difficult to detect. A larva will drop from the leaf and hang on a silken thread if disturbed (Goodey, 1991). During the second and third instars, the larva begins to roll the edges of the leaves together, and silken threads are spun on infested leaves (Rashid et al., 1971). Later instars eat through the leaves making infested leaves appear skeletonized. The last two larval instars are the most voracious feeders and will usually eat the entire leaf but may avoid the midrib, or other large veins. On legumes, they may excavate deep into pods, sometimes cutting them in two. At the optimal temperature of 25°C (77°F), there are six larval instars, each lasting approximately 2.5 to 3.5 days (Rashid et al., 1971; Harakly and Farag, 1975).

The mature larva stops feeding and enters a prepupal stage. It spins a cocoon within which it pupates. The cocoon is usually attached to the underside of a leaf but can be in the soil (Harakly and Farag, 1975). The pupal duration is affected by climatic conditions; being increased by lower temperatures (Harakly and Farag, 1975). Gaumont and Moreau (1961) reported that the pupal period lasted 15 to 26 days, although at the optimal temperature of 25°C (77°F) it averaged 8.8 days (Rashid et al., 1971).

Adults emerge at dusk and throughout the night and soon begin to fly and mate. Males are ready to mate just after emergence, but females usually mate 1 to 4 days after emergence (Harakly and Farag, 1975). Females reach peak activity on the 4th night after emergence between 0.5 to 2 hours into the scotophase. Peak male activity was observed in 5 to 8 day old males, 1 to 4 hours after the onset of scotophase (Snir et al., 1986). They rest with their wings folded over their back like a tent. Adults are seminocturnal and usually avoid strong sunlight. Generations continually breed through the year with no diapause. There are nine generations per year in Egypt (Harakly and Farag, 1975).
Damage
Leaves may be skeletonized by larval feeding (Taylor and Kunjecku, 1983). Leaves may also be rolled with webbing (CABI, 2007). Frass may or may not be visible. The last two larval instars are the most voracious feeders and will usually eat the entire leaf but may avoid the midrib, or other large veins. It has been reported that on legumes *C. chalcites* may excavate deep into pods, sometimes cutting them in two. In tomato, this species can cause considerable damage to the leaves and vegetative parts of the plant. According to Harakly and Farag (1975), larvae never bore into fruit. However, Daricheva et al. (1983) found that larvae damaged both the leaves and fruits of tomatoes, leading to reduced yield. Napiórkowska-Kowalik and Gawłowska (2006) also recorded this species feeding on both leaves and fruits of tomatoes.

Pest Importance
Chrysodeixis chalcites is a polyphagous polyvoltine species that feeds on the foliage and fruit of vegetable, fruit, and ornamental crops. It is considered one of the most serious lepidopteran pests in many countries, although quantitative data measuring damage is lacking (CABI, 2007). Hill (1983) lists this species as a minor pest of *Brassica* spp., cotton, okra, tobacco, and tomato.

Larvae of *C. chalcites* feed on the leaves of solanaceous plants (EPPO, 2004). *Chrysodeixis chalcites* is the major pest of tomato in Israel during the growing season (Broza and Sneh, 1994) causing considerable damage to the leaves and vegetative parts of the plant, although it does not bore into the fruit (Harakly and Farag, 1975). Daricheva et al. (1983) state that larvae were found to damage leaves and fruits of tomatoes in greenhouses in Turkmenistan. Yield was reduced by 10 – 15%, especially in soft-fruiting varieties. Most damage was attributed to mid- and late-instar larvae (Daricheva et al., 1983). It is reported as a serious pest in Bulgaria and Turkey (Loginova, 1992; Uygün and Ozgur, 1980) affecting tomato, cucumber and peppers. This species is also a major pest in Dutch greenhouses on both sweet pepper and tomato (van Oers et al., 2004). It is a serious pest of potato in Mauritius (Anon., 1984).

In Israel, it is also one of the most important noctuid pests of fodder crops, such as alfalfa and clover (Avidov and Harpaz, 1969). This species also feeds on alfalfa, maize, and soybean in Spain (Amate et al., 1998). In northern Italy, *C. chalcites* is one of the principal arthropod pests on soybean (Zandigiacomo, 1990). Yield loss can be seen if larvae feed during the soybean reproductive stages (Taylor and Kunjeku, 1983). It also attacks fields of artichokes (Ippolito and Parenzan, 1985). In Egypt, *C. chalcites* is considered the most serious of all semi-looper pests attacking field fruit and vegetables (Anon., 1984).

In protected cultivation, *C. chalcites* can occur at any time of the year and can reach high levels of infestation on vegetables and ornamental plants. It is reported as a serious pest in Bulgaria and Turkey (Loginova, 1992; Uygün and Ozgur, 1980) affecting tomato, cucumber, and peppers. *Chrysodeixis chalcites* is one of the four main noctuid pests of greenhouse crops in Sicily (Inserra and Calabretta, 1985) and a continual pest in greenhouses in the Netherlands (Vos and Rutten, 1995) and Belgium (Veire, 1983).
Known Hosts
“Chrysodeixis chalcites is highly polyphagous, feeding on many fruit, vegetable and ornamental crops, and weeds in many plant families including Acanthaceae, Asteraceae, Bignoniaceae, Boraginaceae, Brassicaceae, Convolvulaceae, Crassulaceae, Lamiaceae, Fabaceae, Malvaceae, Orchidaceae, Rosaceae, Scrophulariaceae, Solanaceae, Verbenaceae and Violaceae. It can be a pest of crops grown outdoors and in protection, including both shade and greenhouses” (CABI, 2007).
An abbreviated record of hosts follows (CABI, 2007):

Major hosts
Glycine max (soybean), Gossypium herbaceum (short staple cotton), Nicotiana tabacum (tobacco), Phaseolus spp. (beans), Phaseolus vulgaris (common bean), Solanum lycopersicum (tomato), and Solanum tuberosum (potato).

Minor hosts
Anethum graveolens (dill), Arachis hypogaea (peanut), Aster spp., Brassica oleracea var. botrytis (cauliflower), Brassica oleracea var. capitata (cabbage), Brassica spp., Capsicum annuum (bell pepper), Chrysantherum indicum (chrysanthemum), Citrus spp., Coffea arabica (coffee), Cucumis sativus (cucumber), Cucurbita pepo (zucchini), Cynara cardunculus subsp. cardunculus (=C. scolymus) (artichoke), Dahlia spp., Dianthus spp. (carnation), Ficus carica (fig), Fragaria spp., Helianthus tuberosus (Jerusalem artichoke), Hippeastrum hybrids (amaryllis), Lactuca sativa (lettuce), Medicago sativa (alfalfa), Musa spp. (banana), Pelargonium spp. (geranium), Salvia officinalis (common sage), Stachytarpheta jamaicensis (Jamaica vervain), Trifolium repens (white clover), Triticum aestivum (wheat), and Zea mays (corn).

Wild hosts
Echium vulgare (viper's-bugloss), Marrubium spp. (horehound), Teucrium scorodonia (wood germander), and Urtica dioica (stinging nettle).

This species has been found on tomato and green beans in Canada (Murillo et al., 2013).

Pathogens or Associated Organisms Vectored
Chrysodeixis chalcites is not a known vector and does not have any associated organisms.

Known Distribution
Distribution information for C. chalcites is difficult to ascertain because older records are now considered to be two species, C. chalcites (Africa, Mediterranean, and the Middle East) and C. eriosoma (Asian tropics, Australia, and New Zealand).

Chrysodeixis chalcites is primarily distributed between 45°N and 35°S, from southern Europe and the Mediterranean and the Middle East to Africa (CABI, 2007; Murillo et al., 2013).
Africa: Algeria, Angola, Cameroon, Cape Verde, Comoros, Congo, Cote d’Ivoire, Egypt, Gambia, Guinea, Kenya, Libya, Madagascar, Malawi, Mauritius, Morocco, Mozambique, Nigeria, Reunion, Saint Helena, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, South Africa, Tunisia, Uganda, Zambia, and Zimbabwe;

Europe: Albania, Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, France (including Corsica), Germany, Gibraltar, Greece (including Crete, Cyclades Islands, and Dodecanese Islands), Hungary, Italy (including Sardinia and Sicily), Macedonia, Malta, Moldova, Netherlands, Poland, Portugal (including Azores and Madeira), Romania, Serbia, Slovenia, Spain (including Balearic Islands and Canary Islands), Sweden, Switzerland, Ukraine, and the United Kingdom;

Middle East: Iran, Iraq, Israel, Jordan, Lebanon, Syria, Turkey and Turkmenistan;

North America: Canada (Daricheva et al., 1983; CABI, 2007; Fibiger and Skule, 2011).

“Chrysodeixis chalcites” immigrants from North Africa or southern Europe, borne on strong southerly winds, are sometimes recorded in central and northern Europe (Austria, Denmark, Germany, Sweden, Switzerland and the United Kingdom) in the late summer or autumn (Jor, 1973; Bretherton, 1983; Hachler et al., 1998; Palmqvist, 1998, 2002). There are about 50 records of C. chalcites as a migrant to the UK between 1943 and 1990 (Bretherton, 1983). Outdoor breeding populations occur in Europe as far north as northern Spain and northern Italy. No successful breeding is reported outdoors in northern Europe” (CABI, 2007).

“Lempke (1982) and Vos and Rutten (1995) noted that C. chalcites is present all year round in greenhouses in the Netherlands. Veire (1993) reported populations established in greenhouses in Belgium. However, there is no evidence that C. chalcites can overwinter outdoors in the Netherlands (Lempke, 1982) or elsewhere in northern Europe” (CABI, 2007).

In January 2006, a detection of either C. chalcites or C. eriosoma was made in two vegetable production greenhouses in Delta, British Columbia Canada. The pest has been found in subsequent surveys, delimitation surveys continue, and the area has been put under compliance agreement to prevent further spread. As of May 2007, no further detections have been made and the greenhouses have been released from quarantine. See the following pest alerts for further information:

http://www.pestalert.org/oprDetail.cfm?oprID=187,
http://www.pestalert.org/oprDetail.cfm?oprID=237,

This species was recently found in the counties of Essex and Chatham-Kent, southwestern Ontario, Canada in tomato and bean crops. It is unknown whether the moth overwinters in southwestern Ontario or if it overwinters further south, migrating to Ontario during the spring. Murillo et al. (2013) suggests that this species is most likely established in surrounding field tomato crops in the United States, specifically in Michigan, Ohio, and New York (Murillo et al., 2013). However, this has not been confirmed by surveys conducted in the United States.
Note: Lafontaine and Schmidt (2013) state that this species is present in Michigan; however, this record cannot be verified. The authors cited (Murillo et al., 2013) state that they believe C. chalcites is present in Michigan, but do not provide any records of its occurrence there. There are currently no known records of this species from Michigan.

Pathway
There have been over 300 interceptions of this pest from 1984 to the present. This species has been intercepted on material originating from multiple countries. The most interceptions have occurred on material originating from the Netherlands (229) and Israel (28). The species has been intercepted on many different plant species including: Lycopersicon sp. (57), Capsicum sp. (22), Bupleurum sp. (12), Ocimum sp. (11), Cymbidium sp. (11), Celosia sp. (10), Gloriosa sp. (10), Hydrangea sp. (12), and Mentha sp. (10). Chrysodeixis chalcites has also been intercepted on non-host material including: aircraft (3), cargo, containers, and tiles (1 each) (AQAS, 2012; queried June 28, 2012). This species has also been intercepted by California (CDFA, 2005).

This species can easily travel through international trade. It has been found in Pelargonium from Germany to Hungary, on Chrysanthemum morifolium and Pelargonium from the Canary Isles to the UK, on bananas from the Canary Isles to Italy as well as from the Netherlands to the UK, and on Impatiens from Israel to the UK (EPPO, 1998; EPPO, 2000; reviewed in CABI, 2007). Larvae have been frequently imported into Britain on chrysanthemum (Carter, 1984) and particular attention should be paid to this commodity.

Passoa (2007) states that interceptions originating from Hawaii are C. eriosoma, Pseudoplusia includens if originating from the New World, and either C. chalcites or C. eriosoma (depending on locality) if originating from the Old World.

Potential Distribution within the United States
In 1995, a specimen of C. chalcites was found on Pelargonium (geraniums) in a greenhouse in Ohio. This pest is not known to be established in the United States (CABI, 2007).

This species is likely to establish in the United States wherever host material and suitable climate are found. Based on its native distribution and migratory behavior (CABI, 2012), it would likely find suitable climate for establishment in Plant Hardiness Zones 6 to 11 and may migrate farther north during warm temperature seasons. Further investigation is needed to determine where exactly in the continental United States it could overwinter. This species can also establish in areas with unfavorable climates by establishing in greenhouses as it has in parts of northern Europe (CABI, 2007). Two risk maps have been developed for this species. The first risk map is based on host availability and suitable climate. It includes a temperature exclusion layer of 2.5°C (36.5°F) for 60 days (Fig. 4). This map shows that permanent populations can occur throughout the southern portion of the United States.
Figure 4. Risk map for *Chrysodeixis chalcites* showing overall risk of permanent population establishment within the continental United States. Values from low to high indicate increased host density and suitable climate. Note: excluded areas could have temporary populations occur through migration. Map courtesy of USDA-APHIS-PPQ-CPHST. Check www.nappfast.org for the most recent map updates.

Although establishment cannot occur in excluded areas, temporary populations can occur due to migration of the species. Because of this, a second risk map with no temperature exclusion was also developed (Fig. 5). This map shows overall risk of both permanent and seasonal migratory populations within the continental United States. This map shows that populations can potentially be found throughout the United States.
Figure 5. Risk map for *Chrysodeixis chalcites* showing overall risk of both permanent and seasonal migratory populations within the continental United States. Values from low to high indicate increased host density and suitable climate (no temperature exclusion included). Map courtesy of USDA-APHIS-PPQ-CPHST. Check www.nappfast.org for the most recent map updates.

Survey

CAPS-Approved Method: The CAPS-approved method is a trap and lure combination. The trap is a wing trap. The lure is effective for 28 days (4 weeks). The lure dispenser type is a rubber septum.

Any of the following Trap Product Names in the IPHIS Survey Supply Ordering System may be used for this target:
- Wing Trap Kit, Paper
- Wing Trap Kit, Plastic

The Lure Product Name is “*Chrysodeixis chalcites* Lure.”

IMPORTANT: Do not place lures for two or more target species in a trap unless otherwise recommended.
Trap spacing: When trapping for more than one species of moth, separate traps for different moth species by at least 20 meters (65 feet).

*For the most up-to-date methods for survey and identification, see Approved Methods on the CAPS Resource and Collaboration Site, at http://caps.ceris.purdue.edu/.

Literature-Based Methods:

Trapping: A pheromone for trapping *C. chalcites* is available. The lure (a 5:1:1 mixture of (Z)-7-dodecenyl acetate, (Z)-9-tetradecenyl acetate, and (Z)-9-dodecenyl acetate) (Dunkelblum et al., 1987) is dispensed from a rubber septum and the recommended replacement interval is every 4 weeks.

Dunkelblum and Mazor (1993) captured this species using a lure containing 2,500μg of Z7-12:AC, 50μg of Z9-12:AC, and 2,000μg of Z9-14:Ac.

This species was caught in Ontario, Canada, using universal moth traps baited with pheromone lures for *Trichoplusia ni* (Murillo et al., 2013). The lures for both species have similar components (Dunkelblum and Mazor, 1993).

Survey Site Selection:

Traps should be placed in areas where host material is present. This can include host crop fields and greenhouses with host material, among other places.

Trap placement:

Traps should be placed near the highest point of the plant, about 1 m (approx. 3 1/4 ft) from the ground on supporting posts or higher if the crop is higher.

Time of year to survey:

This species can be present year-round in a greenhouse setting. In warmer climates, this species continually breeds throughout the year with no diapause. In more northern climates, adults are more likely to be found during warmer periods. This species is known to migrate to northern areas in the spring.

Visual survey: Leaves should be examined on upper and lower surfaces for larvae. Damage symptoms, such as skeletonized or rolled leaves with webbing may be easier to detect (CABI, 2007).

Not recommended: This species is sometimes found in light traps (Deans, 2005; Kimber, 2008); however this survey method is not species specific.

Key Diagnostics/Identification

CAPS-Approved Method: Confirmation of *Chrysodeixis chalcites* or *eriosoma* is by morphological identification. Identification of adults requires dissection of the male genitalia; use Passoa (1995a) as an aid. Molecular analysis is required for identification at the species level.
Several screening aids are available for this species, including a field screening aid (http://caps.ceris.purdue.edu/webfm_send/2126), a diagnostic aid with non-targets (http://caps.ceris.purdue.edu/webfm_send/2129), and an identification aid with non-targets (http://caps.ceris.purdue.edu/webfm_send/2130).

A screening aid for CAPS target Noctuidae (males), including *C. chalcites*, can be found in Passoa (2009). Adult genitalia are shown in Passoa (1995a) and Passoa and Gilligan (1995).

For the most up-to-date methods for survey and identification, see Approved Methods on the CAPS Resource and Collaboration Site, at http://caps.ceris.purdue.edu/.

Easily Confused Pests

In Africa and Europe, *C. chalcites* may be confused with *C. acuta*, although *C. acuta* is larger and has a more pointed forewing. The silver spots are also larger (Bretherton, 1983). In the United States, immigrant *C. chalcites* appear similar to *Pseudoplusia includens* (soybean looper), but the male genitalia are quite different (Passoa, 1995a). Larvae should be reared to adulthood to confirm their identity (Passoa, 1995a).

This species is morphologically similar to *C. eriosoma*. EPPO (2001) states that typical “silver Y” wing markings can distinguish *C. eriosoma* from *C. chalcites*, while Murillo et al. (2013) state that this species cannot be reliably distinguished with morphological techniques; the only way to distinguish between the two species is by looking at geographic range, DNA, and pheromones. Murillo et al. (2013) state that these two species could potentially be the same.

A key to genera of Noctuoidea (subfamily Plusiinae) found in the United States and Canada for both adults and larvae can be found in Lafontaine and Poole (1991).

References

Last updated: July 12, 2013

