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A B S T R A C T

Impervious surfaces are a ubiquitous urban feature that increase temperature and tree drought stress and are a
demonstrated indicator of Acer rubrum L. tree condition and insect pest abundance. We examined the re-
lationship between A. rubrum condition, impervious surface cover, and Melanaspis tenebricosa (Comstock)
abundance, a primary herbivore of urban A. rubrum, in eight cities across the southern distribution of A. rubrum.
We predicted that the effects of warming, due to impervious surface, would be greater in warmer southern cities
than in cooler northern cities. We found that impervious surface was a robust predictor of tree condition, but this
effect was not significantly affected by background temperature. Melanaspis tenebricosa abundance was a func-
tion of impervious surface and background temperature, with greatest abundances occurring at mid latitudes.
Based on these relationships, we developed impervious surface thresholds to inform site selection for A. rubrum
throughout the southeastern USA. Planting criteria based on habitat characteristics should maximize urban tree
longevity and services provided.

1. Introduction

Trees are an important part of urban landscapes. They provide
multiple ecosystem services that improve both human (Sanesi et al.,
2011) and environmental health (Aber, 1992; Escobedo and Nowak,
2009). Urban trees provide aesthetic beauty (Price, 2003), provide
people with a sense of well-being (Bratman et al., 2015), generate
higher property values (Donovan and Butry, 2010; Pandit et al., 2013),
and their canopy cover is correlated with safer neighborhoods (Kondo
et al., 2017). Urban trees also filter air and water (Aber, 1992; Escobedo
and Nowak, 2009), cool the environment via direct shade and tran-
spiration (Bowler et al., 2010; Balogun et al., 2014), and sequester
carbon (Nowak et al., 2013) in addition to other services (McPherson
et al., 1997). Unfortunately, urban trees are often subject to stress and
insect pest infestations that can reduce physiological functions, growth,
and ecosystem services (Meineke et al., 2013; Dale and Frank, 2014a;
Youngsteadt et al., 2014). A primary challenge in mitigating these
factors and designing more sustainable urban landscapes is selecting
plant species that will thrive with minimal pesticide, water, or other
non-renewable inputs. To meet this challenge, landscape planners and
maintenance professionals must be able to predict how location-specific
conditions will affect long-term tree health.

Trees planted in urban landscapes are often surrounded by im-
pervious surface — a common urban land-cover class — such as

roadways, parking lots, and sidewalks. Trees surrounded by impervious
surfaces have much shorter life expectancies than trees grown in parks
or natural areas (Watson et al., 2014) and impervious surface cover is
correlated with many tree stressors, including drought conditions, in-
adequate soil volumes, pollutants, and warmer temperatures (Timilsina
et al., 2014; Guo et al., 2015; Mullaney et al., 2015b; Chen et al., 2017),
which can lead to poor performance and hastened death. For example,
the soil beneath impervious surfaces is regularly very compact (e.g.,
95% Proctor) to provide structural support to the impervious surface
that rests upon it. Urban trees roots are often unable to sufficiently
penetrate urban soils resulting in inadequate uptake of water and nu-
trients (Grabosky et al., 2001), even in soils with adequate water and
nutritional content. Moreover, the lack of plant available water in
compact soils may be exacerbated by urban warming that increases
water demand, further reducing tree performance. (Meineke and Frank,
2018).

Impervious surface cover is also a predictor of insect pest abundance
and tree condition in urban areas (Dale et al., 2016). For example, as
little as 2 °C of urban warming can increase insect pest abundance 200-
fold and reduce tree condition from ‘Good’ to ‘Poor’ indicating a decline
in overall structure and health (Dale and Frank, 2014b). Likewise,
urban warming can reduce tree physiological functions like photo-
synthesis and, consequently, growth and carbon sequestration (Vogt
et al., 2015; Meineke et al., 2016). Thus, it is imperative to select the
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right tree for the right place to ensure long-term tree health and the
fulfillment of landscape designs and planning goals.

Identifying and using urban tree planting sites with salubrious
conditions during landscape planning is necessary to maximize tree
longevity and minimize maintenance costs (Mullaney et al., 2015a;
Vogt et al., 2015). Previous research in Raleigh, NC, USA has shown
that higher proportions of impervious surface cover adjacent to red
maples (Acer rubrum L.) increases tree canopy temperature (Dale and
Frank, 2014b), water stress (Dale and Frank, 2017), and the abundance
of gloomy scale (Melanaspis tenebricosa (Comstock)); a primary Acer spp
insect pest in the eastern US (Metcalf, 1912). The combination of these
factors worsens tree condition (Dale et al., 2016). From this work,
impervious surface thresholds for tree condition based on the propor-
tion of impervious surface surrounding a tree (20m radius) were de-
veloped for Raleigh, NC. For example, at or below 32% impervious
cover surrounding a tree, the most likely condition for an A. rubrum
individual was Good, whereas at sites with greater than 62% im-
pervious cover were most often Poor.

The background temperature of a given geography can modulate
the effects of urban warming on tree stress (Wienert and Kuttler, 2005;
Way and Oren, 2010). Accordingly, an equal amount of warming or
drought in a cool city may be less detrimental than in a hot city, where
trees are not only stressed by urban heat but also background tem-
perature. Thus, we hypothesized that impervious surface cover would
remain an effective predictor of urban tree condition in additional ci-
ties, but that the strength of this effect would vary based on the back-
ground climate of the geographic location in which trees were mea-
sured. Here, our goal was to develop A. rubrum planting site
recommendations based on impervious surface thresholds for use by
landscape architects, urban foresters, and other landscape professionals
in the southeastern USA. This work has the potential to serve as a
template to develop urban planting recommendations for tree species in
worldwide locations based on location-specific conditions (e.g., im-
pervious surface).

2. Methods

2.1. Study sites

Our study was conducted in eight cities in the southeastern USA
(Asheville, NC, Atlanta, GA, Charlotte, NC, Gainesville, FL, Knoxville,
TN, Newark, DE, Raleigh, NC, and Savannah, GA) from October 2016 –
March 2017 (Table 1). Study cities covered approximately 10 degrees of
latitude, with a range of 13.1–20.5 °C in mean annual temperature
(Arguez et al., 2010). Our focal species, A. rubrum, can flourish under a
wide range of environmental conditions and is one of the most widely
distributed species in the eastern USA (Abrams, 1998) and Acer spp are
the most commonly planted street trees in the USA (Raupp et al., 2006).

Tree locations were obtained from city tree inventories; in cities
without inventories, local collaborators provided information on loca-
tions with planted A. rubrum. Using these locations and street maps, we
identified potential study locations in ESRI ArcMap 10.1, any tree or
location that was within 30m of a street was retained, this subset en-
sured that we sampled planted trees. For each city, we then used a
stratified random sampling procedure on the subset to select study trees
located across a range of impervious surface values. We used remotely-
sensed impervious surface estimates for the sampling procedure (Xiam
et al., 2011). These procedures resulted in 30–36 study trees per city
(total n=265) that occurred across a range of planting site impervious
surface proportions (range: 0–100%; mean: 56%). All trees were located
on public property and the study-wide mean minimum distance be-
tween trees was approximately 326m.

2.2. Data collection

To determine M. tenebricosa abundance, we pruned four randomly
selected terminal twigs (30 cm), one from each cardinal direction, from
each tree using a pole pruner. In the laboratory, we counted live M.
tenebricosa adult females using a dissecting microscope per 15 cm of
twig. Our statistical unit was an individual tree and we recorded M.
tenebricosa counts as the mean value of the four twigs. Counts were
log10 (x+1) transformed prior to analyses.

We estimated the proportion of land cover that was impervious
surface within a ∼20m radius (0.126 ha) of each tree using the ‘Pace-
to-Plant’ technique (Dale et al., 2016). This technique utilizes four
transects that each originate at the base of a tree and are situated 90°
apart from one another. The initial transect is identified as the one with
the closest adjacent impervious edge and the transect intersects this
impervious edge at 45°. The proportion of impervious cover within
∼20m (i.e., 25 paces) of each tree is estimated as the sum of the paces
(x/100) that occur upon impervious surface. This technique has been
tested on a variety of impervious surface configurations and also pro-
duces results that are highly correlated (i.e., R2= 0.96) with those of
GIS based analyses (Dale et al., 2016).

Tree condition ratings are a tool commonly used by urban tree
professionals as a qualitative, rapid method to estimate overall tree
health (e.g., Berrang et al., 1985; Koeser et al., 2014). We used an or-
dinal rating system to similar to Dale and Frank (2014b), and we as-
signed each tree a rating of Good, Fair, Poor, or Dead (Dead trees were
not included in our analyses). Trees in Poor condition had broken or
multiple central leaders, exposed or self-girdling roots, injuries, mul-
tiple dead branches, branch tip dieback, sparse canopies, and/or scor-
ched or chlorotic leaves. Fair trees had less severe indicators of tree
decline than Poor trees, including the presence of some dead branches,
some root exposure, some canopy dieback, and/or wilting or discolored
leaves. Good trees had no or minimal dead branches, no injuries, and

Table 1
Study cities and tree characteristics.

Tree Condition

City, State Latitude (°) Temp(°C) n Impervious surface (%) M. tenebricosa abundance Nearest Neighbor (m) Good Fair Poor

Newark, DE 39.68 13.1 36 55.4 (4.1) ab 6.4 (3.2) c 91 9 14 13
Asheville, NC 35.59 13.6 35 54.9 (4.5) ab 7.7 (4.1) c 333 10 13 12
Knoxville, TN 35.96 14.3 36 55.2 (4.5) ab 37.4 (16.0) bc 104 10 11 15
Raleigh, NC 35.78 15.9 32 53.6 (3.9) ab 57.9 (17.2) a 740 8 10 14
Charlotte, NC 35.23 16.1 30 57.5 (4.2) ab 34.5 (10.2) ab 332 7 8 15
Atlanta, GA 33.75 16.5 31 69.5 (4.8) a 33.3 (9.3) ab 104 5 14 12
Savannah, GA 32.08 19.3 30 66.2 (3.8) a 6.3 (2.1) bc 279 6 9 15
Gainesville, FL 29.65 20.5 35 41.0 (4.6) b 6.9 (3.7) c 622 13 13 9
All 265 56.3 (1.6) 23.4 (3.6) 326 68 92 105

Mean values are presented for impervious surface cover and Melanaspis tenebricosa abundance with standard error of the mean in parentheses. Different letters
indicate differences between cities using Benjamini–Hochberg (BH) post hoc comparisons (α=0.05) on Kruskal–Wallis analysis of variable of interest. Tree con-
dition reports the number of Acer rubrum trees per condition rating per city. Cities are listed in ascending order of mean winter temperature.
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had healthy leaves with mostly full to full canopies.
Background temperature data (800 m2 temperature spatial grids of

monthly 30-yr normals) was sourced from the PRISM Climate Group at
Oregon State University (http://prism.oregonstate.edu, 21 April 2017).
We calculated mean annual and seasonal (mean minimum winter
[December, January, February], mean maximum summer [June, July,
August]) temperature by extracting surface temperature values from
temperature grids at each study tree’s location.

2.3. Statistical analyses

All statistical analyses were performed in R version 3.3.2 (R Core
Team, 2016). When considering all cities, we modeled M. tenebricosa
abundance as a function of impervious surface cover and background
temperature with a quadratic regression. We created three models, one
for each background temperature variable, and retained the one with
best fit: mean minimum winter temperature. Within cities, M. tenebri-
cosa abundance was modeled as a function of impervious surface using
linear regression.

Across cities, we modeled tree condition as a function of impervious
surface cover or M. tenebricosa abundance as main effects with back-
ground temperature as a covariate. Within-city models contained only
main effects. We used ordinal logistic regression, polr function of the
‘MASS’ package (Venables and Ripley, 2013), for all tree condition
models, where tree condition was ordered Good to Fair to Poor. The
model with best fit (i.e., the greatest likelihood ratio index) was re-
tained. Tree condition thresholds were identified from the model in-
tercepts (Guisan and Harrell, 2000) and are delineated as the value of
impervious surface where the most likely tree condition transitioned
from one condition to another (i.e., Good to Fair, Fair to Poor).

3. Results

Across all cities, M. tenebricosa abundance was a function of im-
pervious surface cover and mean winter temperature (F3,259= 20.7,
adj. R2= 0.18, P<0.001; Table A1). Within cities, M. tenebricosa
abundance was a function of impervious surface cover in 4 of 8 study
cities, those occurring in mid latitudes of the study (Table A2).

Overall, M. tenebricosa abundance was a significant, but modest
(likelihood ratio index = 0.205) predictor of tree condition. Considering
cities individually, M. tenebricosa abundance was a significant predictor
(P<0.001) of tree condition for 4 of the 8 study cities (Table A3).
Impervious surface cover was consistently a significant predictor of tree
condition across and within cities (P<0.001), and the likelihood ratio
index for each of these models was always greater when using im-
pervious surface as compared to M. tenebricosa abundance as the pre-
dictor (Table A4). While tree condition was a function of impervious
cover, background temperature was not a significant covariate, in-
dicating that the effect of impervious cover on tree condition was not
modulated by background temperature in the study cities.

Impervious surface planting thresholds for A. rubrum were identified
across and within each city (Fig. 1). Considering all cities, we found the
Good to Fair threshold at 36% impervious surface cover, and Fair to
Poor at 61%. Within cities, the thresholds ranged from 29–44% for
Good to Fair and 54–69% for Fair to Poor, with mid-latitude study cities
generally transitioning to Poor condition at lower percentages of im-
pervious surface cover.

4. Discussion

Understanding how location-specific characteristics affect tree
condition is necessary to make informed planning decisions about tree
placement and maintenance in urban areas. In this study, we examined
the effect of M. tenebricosa abundance (a primary insect pest of Acer
spp) and impervious surface cover (a ubiquitous and important driver
of tree health within urban areas) on A. rubrum condition in cities that

differed in background temperature across the southern distribution of
A. rubrum. We found that the percentage of impervious surface sur-
rounding A. rubrum planting sites was a good predictor of tree condition
across the southeastern USA and should be considered a useful criterion
for urban landscape designs that include A. rubrum. Considering all
study cities, the odds of an individual A. rubrum transitioning to a worse
condition were 1.07 times greater with each percentage increase in
impervious surface cover. Thus, within the southeastern USA, land-
scape professionals can expect A. rubrum individuals planted at sites
with 36% or less impervious surface cover (∼20m radius) to be in good
condition.

We hypothesized that the effect of impervious cover on tree con-
dition would differ based on the background temperature at the tree’s
geographic location and would thus require different impervious sur-
face thresholds. Trees surrounded by large percentages of impervious
surface tend to be more water stressed due to higher temperatures, less
soil moisture availability, and increased transpiration; these conditions
or their combined effects can reduce tree growth and health (Cregg and
Dix, 2001). As in other studies, we found that M. tenebricosa abundance
was positively correlated with impervious surface (Dale and Frank,
2014b, 2017). Additionally, we found that M. tenebricosa abundances
were a function of impervious cover and background temperature, with
greatest abundances in the middle of the temperature distribution of
our study cities. However, M. tenebricosa are not vagile and cannot flee

Fig. 1. Impervious surface cover thresholds for Acer rubrum plantings. These
plots demonstrate the value of impervious cover at which the tree condition
with the greatest probability of occurrence transitions from Good to Fair (left
vertical bar) and Fair to Poor (right vertical bar). Tree condition probabilities
(Good [solid gray line], Fair [dashed black line], Poor [dotted black line]) are
derived from an ordinal logistic regression for each city, where tree condition is
a function of the proportion of impervious surface cover within a 20m radius of
the planting site. Plots are arranged top to bottom in ascending order of mean
winter temperature.
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from inclement temperatures. This suggests that while M. tenebricosa
has a southern USA distribution, the combination of urban heat and
warmer background temperature may be too hot for M. tenebricosa
(Fig. 1). Yet,M. tenebricosa abundance was not a robust predictor of tree
condition, and background temperature was not a significant covariate
in our model predicting tree condition with impervious surface as our
predictor. Thus, for A. rubrum urban planning and planting purposes,
regional temperature appears to be less important than impervious
surface cover in its southern distribution.

5. Conclusion

A straightforward way to maximize urban tree health and to ensure
longevity of tree-provided services is to put the right tree in the right
place. Our impervious surface thresholds, which identify transitions in
A. rubrum expected condition — Good to Fair at 36% impervious sur-
face cover and Fair to Poor at 61% — are one way to guide putting the
right tree in the right place within the southeastern USA. When avail-
able, city-specific thresholds (e.g., Fig. 1) may provide additional in-
sight. Moreover, this research provides a general framework for de-
veloping species-specific planting site recommendations based on
location-specific conditions, such as pit soil volume, soil pH (affected by
deicing solutions or concrete weathering), or salinity levels (increased
salt levels can create drought-like conditions), that may be more im-
portant for some species or cities. However, we contend that im-
pervious surface is likely a good predictor of tree condition for other
cities and tree species given its ubiquity in urban locations. Specific

recommendations for species, locations, or both can be easily in-
corporated into urban tree planning decisions and will complement
existing local expertise and industry standards.

Acknowledgements

Funding for this project was provided by the USDA National
Institute of Food and Agriculture funded Southern IPM Center, under
Agreement No. 2014-70006-22485, as well as USDA National Institute
of Food and Agriculture award numbers 2013-02476 and 2016-70006-
25827 to SDF. The project described in this publication was also sup-
ported by Cooperative Agreement no. G15AP00153 from the United
States Geological Survey. Its contents are solely the responsibility of the
authors and do not necessarily represent the views of the Southeast
Climate Adaptation Science Center or the USGS. This manuscript is
submitted for publication with the understanding that the United States
Government is authorized to reproduce and distribute reprints for
governmental purposes. We thank the Asheville Public Works
Department, City of Atlanta Arborist Division, City of Charlotte
Landscape Management Division, City of Gainesville Public Works, City
of Knoxville Urban Forestry Division, City of Newark Department of
Parks and Recreation, City of Raleigh Parks, Recreation, and Cultural
Resources Department, and City of Savannah Park and Tree Department
for their permission to conduct this research on public trees. We would
like to thank Annemarie Nagle, Lawrence Long, and many under-
graduate assistants for their help with lab and field work.

Appendix

.

Table A1
Quadratic model details for predicting Melanaspis tenebricosa abundance by impervious surface cover
(%) and mean minimum winter temperature (°C) across all study cities.

Parameter Estimate ± SE t

Intercept 0.28 (0.1) 2.30*

Impervious surface (%) 0.01 (0.0) 5.11***

Mean Winter Temp (°C) 0.07 (0.02) 3.10**

Mean Winter Temp2 (°C) −0.02 (0.01) −4.48***

* P≤ 0.05, ** P≤ 0.01, *** P≤ 0.001.

Table A2
Melanaspis tenebricosa abundance (log10[x+1]) as a function of impervious surface cover (%) by study city.

overall model

City, State n F Adj. R2 term Estimate SE t

Newark, DE 36 1.0 0.00 intercept 0.52 0.2 2.3*

impervious
surface

0.00 0.0 −1.0

Asheville, NC 35 9.7** 0.2 intercept −0.33 0.2 −1.6
impervious
surface

0.01 0.0 3.1**

Knoxville, TN 36 7.6** 0.16 intercept −0.20 0.3 −0.6
impervious
surface

0.01 0.0 2.8**

Raleigh, NC 32 9.6** 0.22 intercept 0.08 0.4 0.2
impervious
surface

0.02 0.0 3.1**

Charlotte, NC 30 27.1*** 0.47 intercept −0.69 0.3 −2.2*

impervious
surface

0.03 0.0 5.2***

Atlanta, GA 31 1.6 0.02 intercept 0.39 0.4 0.9
impervious
surface

0.01 0.0 1.3

(continued on next page)
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Table A2 (continued)

overall model

City, State n F Adj. R2 term Estimate SE t

Savannah, GA 30 0.4 −0.02 intercept 0.23 0.4 0.7
impervious
surface

0.00 0.0 0.6

Gainesville, FL 35 4.2* 0.09 intercept −0.03 0.2 −0.2
impervious
surface

0.01 0.0 2.1*

Cities are listed in ascending order of mean winter temperature. * P≤ 0.05, ** P≤ 0.01, *** P≤ 0.001.

Table A3
Ordinal logistic regression model results for predicting tree condition as a function of Melanaspis tenebricosa abundance (log10[x+1]).

overall model

City, State n χ2 likelihood ratio index term Estimate SE Wald Z

Newark, DE 37 3.5 0.10 y>=Fair 0.81 0.4 1.9
y>=Poor −0.93 0.4 −2.2*

M. tenebricosa 1.13 0.6 1.8
Asheville, NC 35 13.4*** 0.36 y>=Fair 0.51 0.4 1.2

y>=Poor −1.45 0.5 −3.0**

M. tenebricosa 7.68 4.5 1.7
Knoxville, TN 36 16.7*** 0.42 y>=Fair 0.38 0.4 0.9

y>=Poor −1.40 0.5 −2.9**

M. tenebricosa 2.04 0.7 2.9**

Raleigh, NC 32 11.8*** 0.35 y>=Fair −0.28 0.6 −0.5
y>=Poor −2.11 0.7 −2.9**

M. tenebricosa 1.53 0.5 3.1**

Charlotte, NC 30 6.9** 0.24 y>=Fair 0.48 0.5 0.9
y>=Poor −0.93 0.5 −1.8
M. tenebricosa 1.18 0.5 2.4*

Atlanta, GA 31 3.0 0.11 y>=Fair 1.12 0.6 2.0*

y>=Poor −1.14 0.6 −2.0*

M. tenebricosa 0.73 0.4 1.7
Savannah, GA 30 0.3 0.01 y>=Fair 1.24 0.5 2.4*

y>=Poor −0.16 0.5 −0.3
M. tenebricosa 0.34 0.6 0.6

Gainesville, FL 37 3.5 0.10 y>=Fair 0.21 0.4 0.6
y>=Poor −1.72 0.5 −3.4***

M. tenebricosa 2.22 0.9 2.4*

All 266 53.3*** 0.21 y>=Fair 0.58 0.2 3.7***

y>=Poor −1.13 0.2 −6.7***

M. tenebricosa 1.20 0.2 6.6***

Cities are listed in ascending order of mean winter temperature. * P≤ 0.05, ** P≤ 0.01, *** P≤ 0.001.

Table A4
Ordinal logistic regression model results for predicting tree condition as a function of impervious surface cover (%).

overall model

City n χ2 likelihood ratio
index

term Estimate SE Wald Z

Newark, DE 37 15.5*** 0.39 y>=Fair −1.71 0.9 −1.9
y>=Poor −4.00 1.1 −3.6***

impervious surface 0.06 0.0 3.4***

Asheville, NC 35 25.0*** 0.57 y>=Fair −2.79 1.0 −2.8***

y>=Poor −5.59 1.4 −4.1***

impervious surface 0.08 0.0 3.9***

Knoxville, TN 36 16.4*** 0.41 y>=Fair −2.00 1.0 −2.1*

y>=Poor −3.78 1.1 −3.5***

impervious surface 0.06 0.0 3.4***

Raleigh, NC 32 15.1*** 0.43 y>=Fair −2.28 1.1 −2.4*

y>=Poor −4.28 1.3 −3.4***

impervious surface 0.07 0.0 3.3***

Charlotte, NC 30 16.4*** 0.48 y>=Fair −3.11 1.4 −2.3*

y>=Poor −4.99 1.6 −3.2***

impervious surface 0.09 0.0 3.2***

Atlanta, GA 31 25.4*** 0.64 y>=Fair −3.62 1.6 −2.3*

y>=Poor −7.94 2.1 −3.7***

impervious surface 0.10 0.0 3.6***

(continued on next page)
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Table A4 (continued)

overall model

City n χ2 likelihood ratio
index

term Estimate SE Wald Z

Savannah, GA 30 23.4*** 0.62 y>=Fair −5.23 1.9 −2.8**

y>=Poor −7.90 2.3 −3.5***

impervious surface 0.12 0.0 3.5***

Gainesville, FL 37 15.5*** 0.39 y>=Fair −2.10 0.8 −2.8**

y>=Poor −4.98 1.2 −4.3***

impervious surface 0.08 0.0 4.0***

All 266 152.1*** 0.49 y>=Fair −2.28 0.4 −6.4***

y>=Poor −4.64 0.5 −10.4***

impervious surface 0.07 0.0 10.2***

Cities are listed in ascending order of mean winter temperature. * P≤ 0.05, ** P≤ 0.01, ***P≤ 0.001.
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