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Urbanization represents an unintentional global experiment that can pro-

vide insights into how species will respond and interact under future

global change scenarios. Cities produce many conditions that are predicted

to occur widely in the future, such as warmer temperatures, higher carbon

dioxide (CO2) concentrations and exacerbated droughts. In using cities

as surrogates for global change, it is challenging to disentangle climate

variables—such as temperature—from co-occurring or confounding

urban variables—such as impervious surface—and then to understand

the interactive effects of multiple climate variables on both individual species

and species interactions. However, such interactions are also difficult to repli-

cate experimentally, and thus the challenges of cities are also their unique

advantage. Here, we review insights gained from cities, with a focus on

plants and arthropods, and how urban findings agree or disagree with

experimental predictions and historical data. We discuss the types of

hypotheses that can be best tested in cities, caveats to urban research and

how to further validate cities as surrogates for global change. Lastly, we

summarize how to achieve the goal of using urban species responses to

predict broader regional- and ecosystem-level patterns in the future.

1. Species interactions in cities: getting ahead of the curve
Cities are the future. Urban populations are expected to increase by 2.5 billion

in the next 30 years [1] and urbanization will affect the physical environment,

responses and interactions of all organisms that live in cities. Already, cities

have warmer temperatures, higher carbon dioxide (CO2) levels and exacerbated

‘droughts’ due to less infiltration and greater runoff of precipitation [2–6]. In

relation to global change, species in cities—in particular, plant and arthropod

taxa that have underscored research North America and Europe—have

responded to urban and climate variables with phenological shifts, physiologi-

cal changes and adaptive evolution (e.g. [7–9]). Relationships between species

have been altered by abiotic and biotic interactions, ecological niches have

shifted and new communities have developed (e.g. [10–12]). Similar climate

conditions and impacts may occur outside of cities in future global change scen-

arios [5,13] (figure 1). Cities have thus been recognized for their potential

importance as surrogates for global changes happening at larger scales, such

as global warming, and for their potential use in observing and predicting

broader ecological and evolutionary processes [9,14–20].

A critical question in moving forward with the use of cities as surrogates

for global change is whether and, perhaps more usefully, when results from

any one city or study organism are generalizable. To date, research has been

performed disproportionately in North America and Europe, in fields ranging

from atmospheric and earth sciences (e.g. [21,22]) to evolutionary biology (e.g.

[23])—disciplines that are not traditionally well integrated—and has focused

on the responses of plants and arthropods [24]. Even within the spectrum of

ecological research, which is itself broad, separating the effects of global warm-

ing and urban warming, by, for example, comparing cities across latitudes

[9,25], or comparing functional groups among cities [26,27], are relatively
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recent initiatives. In this review, we will (i) examine insights

that have been gained specifically from cities, regarding

phenological, physiological, population, community and

latitudinal responses by and interactions among species

(electronic supplementary material, table S1). Where poss-

ible, we will discuss how urban results do or do not agree

with experimental predictions or historical data, and how

combinations of climate and urban variables, current and

historical data or other approaches may be used to isolate

effects of interest from confounding urban variables in

cities. Then, we will (ii) consider the types of hypotheses

that can be best addressed in cities, caveats to urban

research and what can be done to further validate cities as

surrogates for global change. Lastly, we will (iii) summarize

the potential for urban species responses to inform broader

predictions. Owing to a much greater amount of research on

plants and arthropods, our review will focus on these taxa

and their responses to warming; however, we emphasize

that cities may ultimately present the only globally accessi-

ble and cost-effective means to observe the interactions of

other taxa—from microbes to vertebrates—in response to

multiple interactive climate variables, in different regions

of the world. With their potential as ‘space for time’ substi-

tutions, species responses in cities have occurred over a time

scale and geographical scope that will complement our

understanding of global change gained from historical,

experimental and modelling data.

2. Global change insights gained from cities
(a) Phenological responses
Within cities, along urban–rural gradients and among cities at

different latitudes (figure 2), studies have demonstrated phe-

nological adjustments by urban species, sometimes in

response to measured changes in urban temperature and

sometimes in response to urban variables (such as impervious

surfaces) that correlate with temperature. For example, long-

term records show that the phenology of multiple flowering

plants has advanced in 10 central European cities relative to

rural areas, with stronger trends in recent years [7]. Earlier

plant phenology and urbanization are similarly correlated

in remote sensing studies [30–33]. The combined effects of

climate variables—specifically temperature—and urban

variables on phenology have been observed via long-term

records or on-the-ground observations for other flowering

plants [34,35], urban insects [27,36] and urban birds

[37,38]. Phenological advances in response to warming in

cities are generally supported by experimental studies (e.g.

reviews in [39,40]) and historical datasets from herbarium or

museum collections [41–44].

Interactions between urban species are also affected by

changes in phenology. In Raleigh, NC, USA, a herbivorous

scale insect was not only more abundant on oak trees in

warmer relative to cooler areas [45], but the phenology of

the herbivore became decoupled from the phenology of

the parasitoid wasps that previously formed a natural bio-

control, leading to decreased parasitism at a critical stage

of herbivore development and increased herbivory on trees

in warmer parts of the city [11] (electronic supplementary

material, figure S3). Similarly, reduced parasitism of cereal

leaf beetles, a herbivore pest of grain crops, was observed

during multiple warmer springs in an agricultural setting

[46]. However, field warming experiments may have con-

text-dependent effects on plant and insect phenology [47].

For example, warming advanced the phenology of host

trees more than the phenology of a herbivorous caterpillar

[48], but in another study, warmed caterpillar eggs had

high survival on host trees despite the lag period between

egg hatch and bud burst [49]. Overall, there are increasing

trends towards phenological asynchrony between plants

and herbivores or pollinators [50,51], and asynchrony in

multi-trophic interactions [24,52,53].

Intriguingly, historical collections have demonstrated

that the phenology of multiple wild bee species advanced

in parallel with that of bee-pollinated plants [42]. The use

of historical data in combination with urban sampling is poten-

tially a very powerful approach in understanding phenological

responses. For example, Primack et al. [41] observed current

flowering times of arboretum plants in Boston, MA, USA,

higher temperature

higher carbon dioxide

more frequent heat
waves

more droughts and heavy
rain events

regionally higher ozone

urban heat island

carbon dioxide ‘dome’

exacerbated heat
waves

increased runoff and less
infiltration

higher ozone pollution

climate change
expectation

urban equivalent
condition

Figure 1. Climate change expectations and urban equivalent conditions. Pictured are a suburban forest (left) and an urban street tree (right) in the southeastern
USA, located 5 km apart. (Online version in colour.)
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relative to flowering times of historical specimens of the

same plants. Natural history collections or long-term

records of invertebrate and vertebrate sightings could be

used to complement herbarium studies and shed light on

how phenological shifts have influenced species inter-

actions over longer periods of time than are feasible to

measure experimentally. Understanding how urban species

have responded to gradual changes in climate variables

over time will improve our ability to validate cities as

surrogates for global change.

(b) Physiological responses
Physiological responses by species in cities include changes in

rates of photosynthesis and growth of plants and changes in

abundance and thermal tolerance of insects. Urban red

maples had higher rates of photosynthesis [54] and growth

in warmer relative to cooler sites within a city [28,55], and

red maple seedlings in a warming experiment were also

able to acclimate photosynthetically [56]. However, while

temperate forest trees generally respond positively to

increases in temperature in warming experiments [57–60]

(but see [61,62]), urban trees are more variable and have

demonstrated lower rates of photosynthesis with warming

[21,63] or no difference in rates of photosynthesis [64]. Expla-

nations for these inconsistent physiological responses by trees

could relate to the interactive effects of multiple climate

variables in cities (such as relative humidity, CO2 or soil

moisture), urban variables (such as impervious surface, soil

compaction or building architecture), choice of focal species

and/or biotic interactions (with herbivores and pathogens,

pollinators or natural enemies). Gregg et al. [65] found that

increased growth of poplar seedlings in New York City was

not due to warming, soil alteration or other urban variables,

but, instead, was related to the negative effect of higher rural

ozone concentrations on rural trees. Where urban species

21–25

study sites

major roads

high: 36°C
low: 24°C

temperature (°F)

temperature

46–50 72–75

25–28 50–54 75–79

28–32 54–57 79–82

32–36 57–61 82–86

36–39 61–64 86–90

39–43 64–68 >90

43–46 68–72

(a) (b)

(c)

Copyright © 2015, PRISM Climate Group, Oregon State University

Figure 2. Examples of how within-city, urban–rural and latitudinal comparisons can be used to study species responses to differences in temperature. (a) Within-
city differences in temperature in Raleigh, NC, USA (adapted with permission from Dale & Frank [28,29]). (b) Urban–rural differences in temperature in eastern
North Carolina (image provided by Elsa Youngsteadt). The Landsat thermal images in (a,b) are from 18 August 2007. (c) Average monthly temperature for August
2007 and latitudinal differences in temperature across the eastern USA, with Raleigh, NC indicated for reference (image from the PRISM Climate Group; www.prism.
oregonstate.edu; data accessed 15 January 2017).
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responses agree with warming experiments and/or historical

data, we can be more confident in the robustness of cities as

surrogates for warming. The challenge, in moving forward, is

determining why responses diverge. For example, the likeli-

hood that air pollutants produced in cities may ultimately

have a greater impact on trees in rural environments

[65,66], or the possibility that warmer nighttime temperatures

have greater effect than more commonly modelled daytime

temperatures [64,67], may explain divergence between urban

and experimental results.

Physiological changes may include acclimation or adap-

tive evolution in response to climate or urban variables in

cities. Plasticity allows a genotype to acclimate or express a

different phenotype under altered environmental conditions,

while adaptive evolution is a change in the frequency of a

genetically based trait, due to selective pressure, that results

in higher reproductive success [18,68]. In an example of

adaptation, Cheptou et al. [8] observed selection in favour

of non-dispersing seeds in an annual plant in Montpellier,

France, which improved urban fitness. Selection on func-

tional traits also occurred in the city; urban plants retained

physiological changes in size, rates of photosynthesis and

concentrations of leaf nitrogen when grown together in a

greenhouse with plants from rural sites [69].

The ability to cope with a broader range of temperatures

and also acclimate to warmer overall temperatures may result

in trade-offs between traits. For example, colder winter temp-

eratures at ground level, due to snow removal in cities,

selected against cyanogenesis in urban clover [23]. This other-

wise beneficial anti-herbivory trait was selected against

because of the greater potential for freezing to damage

plant cells, and subsequent auto-toxicity, without an insulat-

ing cover of snow in cities [23]. The effects of warmer

temperatures are more commonly studied in the context of

global change, and while the frequency of cold days and

cold nights are expected to decrease in the future, occasional

cold winter extremes will continue to occur [70]. It is impor-

tant to understand physiological responses of species to hot

and cold temperatures, because more limited exposure to

cold temperatures could result in more negative impacts

when such temperatures do occur. Historical records may

provide additional insights into how species balance general

thermal tolerance with an ability to respond to cold and hot

temperature extremes.

Plasticity in physiological responses to urban warming

has also been demonstrated for insects, other invertebrates

and fungi. Urban leaf cutter ants had higher thermal toler-

ance relative to rural ants in São Paolo, Brazil [71], as did

urban chitinolytic fungi [72], and the abundance, survival

or fecundity of multiple species of scale insects increased

with temperature in Raleigh, NC, USA [11,28,29,45,55,73].

However, hatching success of land snail (Arianta arbustorum)

eggs decreased in warmer urban areas [74], and recent

studies have shown that solitary bees and bumble bees are

more sensitive towarming [75,76], and that amore impervious

surface, which is generally correlated with temperature, may

increase the susceptibility of honey bee (Apis mellifera) colo-
nies to disease [77]. The direct effects of warming on

arthropods and other ectotherms are frequently mediated

by habitat architecture and geometry, which may be more

heterogeneous in cities but also more predictable, as build-

ings remain the same shape and size throughout the year

[78]. Thus, for modelling the effects of climate variables

that depend, to an extent, on arthropod behaviour in relation-

ship to habitat, physiological responses of arthropods may

potentially be more predictable in cities relative to warming

experiments.

(c) Population and community-level responses
Plant and arthropod populations and community structure

and function respond to both climate and urban variables

in cities. Higher urban temperatures and CO2 concen-

trations in Baltimore, MD, USA, relative to a rural site,

closely matched short-term (approx. 50 year) climate predic-

tions [5] and affected the structure of plant communities

that were germinated from the same soil and seed bank.

Urban plant productivity was higher after 1 year in Balti-

more [14], relative to rural plant productivity, and urban

plant succession reflected a greater ratio of perennials to

annuals after 5 years [10], which could have multiple

impacts on plant community function by affecting pollina-

tor resources, habitat for beneficial or pest insects and

multi-trophic interactions.

Arthropods may be affected directly by climate and urban

variables in cities, and also via indirect effects on their preda-

tors and host plants [79]. Meineke et al. [80] found that spider

abundance in urban trees in a mid-latitude city in the USA

did not increase with warming, even though herbivore

(prey) abundance did, and Turrini et al. [81] observed limited

top-down control of aphids on urban relative to rural plants

in Switzerland, but also found that plant biomass mitigated

the benefit of aphid predators. Experimental warming

affected plant community composition in China due to com-

petitive interactions between plant species, but only in the

presence of a beetle herbivore [82]. In other experiments,

the combined effects of elevated warming, CO2 and drought

on an insect herbivore were mediated by changes in plant sec-

ondary compounds and nitrogen content [83], and elevated

warming, CO2 and nitrogen deposition affected floral attrac-

tiveness and nectar chemistry for bees [84]. In a herbarium

collection, the abundance of scale insects preserved on red

maples tracked historical temperature fluctuations [12], repre-

senting direct responses of scale insects to temperature but

also indirect responses to changes in the condition of their

host trees [28,55,73]. Thus, insect responses to the direct

effects of temperature (or CO2) are often difficult to separate

from indirect effects on herbivores via the responses of their

plant hosts [79,85].

Overall, studies of interactions among species or trophic

levels are still outweighed by individual studies of plants

or arthropods [24,47], and there is a general consensus that

long-term and larger-scale experimental studies are needed

to understand how interactive climate variables will affect

population-level responses and community- and ecosystem-

level processes [51,53,85,86]. Using cities as surrogates for

some effects of global change is an opportunity to add to

our understanding of the effects of multiple climate vari-

ables and the responses and interactions of understudied

taxa like vertebrates, worldwide, at potentially lower cost in

terms of time, money and infrastructure relative to traditional

experimental manipulation of climate variables.

(d) Latitudinal responses
Species responses to urban temperature may vary with

respect to differences in background temperature due to
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latitude [17]. More positive effects of global change are gener-

ally predicted for species at higher latitudes [87,88]. Indeed,

over a latitudinal range from 35.88 to 42.48, arthropod abun-

dance was positively correlated with increased within-city

temperature in a high-latitude city in the eastern USA [25].

However, responses were of a greater magnitude and were

more variable from positive to negative in lower latitude

cities. Heterogeneous responses may ultimately cause greater

disruptions of ecological dynamics than consistent directional

responses—whether positive or negative—because species that

currently interact with each other may respond differently

to future warming [25] (electronic supplementary material,

figure S3).

Latitude and urbanization may also have non-additive

effects on species. Although shifts towards earlier phenology

are common in response to latitude or urbanization alone, the

interaction of these two factors led to delays in emergence

and changes in the abundance of multiple species of butter-

flies in OH, USA, suggesting that butterflies responded to

multiple environmental (climate and/or urban) variables

[36], or that butterflies had a nonlinear response to tempera-

ture [89,90]. Long-term phenologies of flowering trees across

the UK have been shown to be influenced by latitude and

urbanization, with more pronounced advances occurring in

northern areas [35] (but see [90]), and similarly over a large lati-

tudinal gradient, urbanization and temperature had increasing

effects on phenology for more than half of China’s 32 major

cities [33]. Recurrent adaptive evolution of cyanogenesis

in clover was also strongly associated with both urbaniz-

ation and latitude [23,91], while reflecting different selective

pressures in different world regions [92].

3. Future directions in cities
(a) Hypothesis testing and study species in cities
Observing the effects of multiple climate variables over long

periods of time and at a large spatial scale is a unique advan-

tage in the use of cities as surrogates for global change. Cities

are ideal for observing the effects of gradual changes in temp-

erature and CO2 on long-lived plants and animals that may

be difficult to grow and manipulate experimentally. The

responses of mature trees to global change are critical to

ecosystem health and services, and long-lived arthropods or

those with an overwinter diapause—which is often regulated

by temperature—may also be ideally studied in cities, rather

than in short-term experiments, to fully capture multi-trophic

interactions over a species’ entire lifespan. Cities can likewise

be used to observe and test responses of insects that are dif-

ficult to confine experimentally, such as wild bees, which

require a large amount of space and a variety of habitat

and floral resources, or temperature-dependent outbreaks of

insects such as defoliating caterpillars (e.g. [93,94]). Lastly,

there are intriguing examples of vertebrate responses to

urban variables, such as anoles with longer limbs that

better suit their city habitat [95], and understanding these

responses alongside corresponding climate variables and

trophic interactions in cities would provide valuable insights

into future regional and ecosystem-level patterns.

Cities are also an ideal location to study the formation

and function of novel no-analogue communities. Intentional

and unintentional species introductions in cities, habitat frag-

mentation and more challenging abiotic conditions have

resulted in urban communities with no current rural analogues.

Overall changes in biodiversity and species interactions are a

major prediction of global change scenarios (e.g. [13,96,97]);

however, changes in community assemblages donot necessarily

mean a loss of biodiversity [98]. Thus, unique relationships

between species in cities may predict future community inter-

actions in rural environments. For example, urban corridors

may facilitate the movement and persistence of heat-tolerant

species of ants [99], butterflies [36,100] and spiders [101],

as well as the establishment of non-native anoles [102]

and the migration of birds [103]. Street trees and other ame-

nity plants are often established outside of their native

range, so comparisons can be made on the same species

in hotter or cooler regions where they may exist naturally

in the future [104]. Herbarium, entomological and natural

history collections of other taxa can shed light on when

new species were introduced in cities and how species

have responded and interacted since their introductions.

Such collections are frequently made at urban and rural

locations and can be compared across space and time

[41,43,44,105–107].

(b) Validating climate variables and evolutionary
potential of species in cities

In the context of using cities as surrogates for the effects of

global change, the measurement of multiple terrestrial cli-

mate variables such as temperature, relative humidity,

precipitation and soil moisture, and atmospheric climate

variables such as CO2 and ozone (‘essential climate vari-

ables’ as defined by the NOAA Global Observing Systems

Information Center, https://www.ncdc.noaa.gov/gosicas;

accessed 30 January 2018) will contribute greatly to under-

standing species responses in cities and their relevance at

the regional and ecosystem level. For example, increased

evapotranspiration, such as in Madison, WI, USA [22], is

influenced by soil moisture and urban warming, and may

play a significant role in tree physiology [108–110], condition

and herbivory [55,73]. Simultaneous measurement of climate

variables and urban variables such as land cover, population

density and impervious surface is crucial in addressing con-

founding factors associated with urban environments, such

as air quality [65,66], water or soil pollution [111–114], soil

compaction and invasive species [115–117].

Understanding the potential for acclimation or adaptive

evolution by urban species (and the potential for non-adaptive

genetic drift and gene flow) is also important in validating

cities as surrogates for global change. Given concerns that

many organisms will be unable to keep pace with environ-

mental change via migration or adaptation [68,118–120],

the responses of urban species that are unable to move

beyond city limits or that experience delayed reproductive

maturity—such as trees—may inform our understanding

of the potential for natural populations to cope with global

change and/or to experience non-adaptive processes [20,120].

Plastic and evolved responses to climate and urban vari-

ables have been demonstrated for individual species in

cities (e.g. reviews in [18,20,68,121]), but the repeatability

of such patterns among cities remains relatively untested

(but see [23]), as does the degree to which plasticity facili-

tates or constrains evolution in cities, or whether genetic

drift of gene flow may explain divergence in cities [121].

In addition to their direct effects on species responses to
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climate variables, trait changes at the organism level may have

cascading effects on multi-trophic interactions and on critical

ecosystem services. Identifying drivers of urban adaptation

and understanding the short- relative to long-term role of plas-

ticity in urban species responses are important steps in making

generalizable predictions based on urban species responses

and interactions.

4. Conclusion: making predictions from cities
In this review, we summarize insights gained from cities into

how climate and urban variables influence species responses

and interactions. We discuss phenological and physiological

responses at population, community and latitudinal scales of

interaction, we examine how insights gained from cities com-

pare with experimental studies and historical data, and we

consider future directions for urban research in terms of

hypothesis testing and validating cities as effective surro-

gates for effects of global change. The overall goal of this

review is to determine how and when urban species

responses can be used to predict broader regional- and eco-

system-level patterns in the future, and to demonstrate that

using cities as surrogates for global change can improve

our geographic and taxonomic understanding of species

responses and interactions.

Overall, the ability to study mature organisms that are

ahead of the curve, experiencing the effects of multiple climate

variables, and undergoing biotic and abiotic interactions

in situ are significant advantages of urban research. These

advantages will complement the understanding we have

gained from field experiments, growth chamber studies and

modelling efforts. While care must be taken to disentangle

multiple driving variables and confounding effects in cities,

difficulties also exist in experimental manipulation of climate

variables, in the cost of manipulating multiple variables or

species over long periods and in the geographic restriction

of many experimental systems to temperate latitudes

[122,123]. Addressing these caveats in cities will produce

results that are more generalizable between individual study

systems, cities and ecosystems. Thus, while studies using

cities as surrogates for the effects of global change have

been primarily limited to the effects of warming on plants

or arthropods, cities potentially represent an accessible and

cost-effective means to observe the interactions of diverse

taxa in response to multiple interactive climate variables

and to make use of complementary experimental and histori-

cal data to define testable hypotheses. Species responses and

interactions in cities are currently an underused resource in

making broader ecological predictions.
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